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Collision group and renormalization of the Boltzmann collision integral
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On the basis of a recently discovered collision group@V. L. Saveliev, inRarefied Gas Dynamics: 22nd
International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585~AIP, Melville, NY,
2001!, p. 101#, the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the
scattering of particles with small angles. In this part theinfinity due to the infinite cross sections is extracted
from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a diver-
gence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be
interpreted in terms of the nonlocal friction force that depends on the distribution function.
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I. INTRODUCTION

A. Parametrization of collisions by a rotation matrix
and collision group

Applications of the group theory remain underutilized
kinetic theory although they deserve to be utilized@1,2#. In
this paper, opportunities and advantages due to the pa
etrization of two-particle collisions by a matrix belonging
the group of rotations are shown. In order to construct
collision integral in the Boltzmann kinetic equation, a col
sion of two particles is usually determined by setting a
rectionn (n251) of the postcollisional relative velocity@3#.
In that case, if a particle of massm1 and velocityn collides
with a particle of massm2 and velocityu, the velocities after
collision are given by the following equations:

n85
mn1u1un2uun

11m
,

u85
mn1u2mun2uun

11m
, ~1!
q
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wherem1 /m2 .
Also, there is another interesting parametrization@4# that

naturally appears in the hard sphere collisions. This will
discussed in detail later. In accordance with the parametr
tion used in Eq.~1!, the collision integral that describes th
time evolution of the distribution functionf (n) of the first
species due to collisions with the second species having
velocity distribution functionc(u) is given by the usual ex-
pression@5#

I ~ f ,c!5E vsuS v2,
v•n

v D @ f ~n8!c~u8!2 f ~n!c~u!#dVndu,

~2!

wherev5v2u is the relative velocity andsu is the differ-
ential collision cross section.

In the present paper, we propose to construct the collis
integral using a parametrization of the scattering represe
by a rotation matrixR̂PO3

1 , which is determined as follows
by Euler’s anglesw, u, andc @6#:
R̂~w,u,c!5S cosw 2sinw 0

sinw cosw 0

0 0 1
D S 1 0 0

0 cosu 2sinu

0 sinu cosu
D S cosc 2sinc 0

sinc cosc 0

0 0 1
D

5S cosw cosc2sinw sinc cosu 2cosw sinc2sinw cosc cosu sinw sinu

sinw cosc1cosw sinc cosu 2sinw sinc1cosw cosc cosu 2cosw sinu

sinc sinu cosc sinu cosu
D . ~3!
d
y

In this case, the transformation of the velocities due to
collision becomes a linear one, which is different from E
~1!:

n85
mn1u1R̂~n2u!

11m
,

a
. u85

mn1u2mR̂~n2u!

11m
. ~4!

The velocitiesn8 and u8 are determined by a partitione
matrix ~232 cells!. The size of each cell is obviousl
(333):
©2002 The American Physical Society05-1



-
of
re

na
-

f

In
te
to

na

-

nd

pro-

-

the

an

V. L. SAVELIEV AND K. NANBU PHYSICAL REVIEW E 65 051205
j85Ŝj, j5S n

uD , Ŝ5S m1R̂

11m

12R̂

11m

m~12R̂!

11m

11mR̂

11m

D . ~5!

Here,j is a six-dimensional bivector consisting of the com
ponentsn andu. Let us briefly describe basic properties
these matrices that can be easily confirmed by their di
multiplication. The scattering matricesŜ(R̂)(R̂PO3) consti-
tute a group that is isomorphic to the group of orthogo
matricesO3 ~the group of rotations including improper rota
tions!:

Ŝ~R̂1!•Ŝ~R̂2!5Ŝ~R̂1•R̂2!, Ŝ21~R̂!5Ŝ~R̂21!. ~6!

Here, it should be noted that parametrization@4# of a colli-
sion by the directionn normal to the plane of reflection o
the relative velocity (v85v22nn•v) also provides a linear
transformation of the particles’ velocities due to collision.
this case, however, scattering matrices do not constitu
group, which is crucial for our further consideration. Due
energy conservation law for a collision, the matrixŜ(R̂) sat-
isfies the following condition:

S̃̂S m 0

0 1D Ŝ5S m 0

0 1D , ~7!

whereS̃̂ is the transpose ofŜ. From Eq.~7! we have

udetŜu51. ~8!

It provides the equality of velocity volumes:

dn du5dn8 du8. ~9!

This relation is much simpler than dn du dV8
5dn8 du8 dV that appears in the case of the conventio
@5# parametrization of a collision.

B. Collision integral

To rewrite the collision integral~2! for the case when a
collision is parametrized by rotation matrix~3!, integration
over directions of the vectorn should be replaced by inte
gration on the invariant measure@6–8# over the group
O3

1(*dVn/4p→*dR̂/8p2):

dR̂5dc dw sinu du ~0<c,w<2p, 0<u<p!,

dR̂5dR̂0R̂5dR̂R̂05dR̂21, ~10!

E dR̂58p2.

The collision integral now takes the following form:
05120
ct

l

a

l

I ~ f ,c!5I ~F !5E b~v,m![ f ~n8!c~u8!2 f ~n!c~u!]
dR̂

2p
du

5E b~v,m!@F„Ŝ~R̂!j…2F~j!#
dR̂

2p
du, ~11!

where b(v,m)5vsu(v,m) is a scattering indicatrix,
m(R̂,v)5v•R̂v/v2 is the cosine of the scattering angle, a
F(j)5 f +c(j)5 f (n)c(u) is the two-particle velocity distri-
bution function.

Here we demonstrate some simple advantages, which
vide the form of the Boltzmann collision integral~11!. By
taking into consideration the following equation,

d~n82n0!d~u82u0!5d~Ŝj2j0!5
1

udetŜu
d~j2Ŝ21j0!

5d„j2Ŝ~R̂21!j0…, ~12!

the measure invariance~10!, and the property of the indica
trix ensuring a detailed equilibriumb(v,R̂)5b(v,R̂21), it
can be easily seen that the expression for the kernel of
bilinear collision operator~11! can be rewritten in the fol-
lowing form:

I „d~n2n0!,d~u2u0!…

5I „d~j2j0!…

5E du
dR̂

2p
b~v,R̂!@d„j2Ŝ~R̂21!j0…2d~j2j0!#

5E dR̂

2p
b~v0 ,R̂!@d~n2n08!2d~n2n0!#. ~13!

A similar equation can also be obtained for the Maxwelli
velocity clusters:

I „f M~n2n0!,cM~u2u0!…

5I „f M+cM~j2j0!…

5E du
dR̂

2p
b~v,R̂!@ f M+cM„j2Ŝ~R̂21!j0…

2 f M+cM~j2j0!#

5E dR̂

2p
@bt~n,u08 ,R̂! f M~n2n08!2bt~n,u0,R̂! f M~n2n0!#,

~14!

where

bt~n,u0 ,R̂!5E b~v,R̂!cM~u2u0!du, ~15!

f M~n !5S m1

2pkTD 3/2

expS 2
m1n2

2kT D ,
5-2
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cM~u!5S m2

2pkTD 3/2

expS 2
m2u2

2kT D .

Here, Eqs.~7! and ~8! were employed. At the zero temper
ture limit (T→0), from Eqs. ~14! and ~15!, we have an
asymptotic form similar to Eq.~13!,

I „f M~n2n0!cM~u2u0!…t→0

5E dR̂

2p
b~v0 ,R̂!@ f M~n2n08!2 f M~n2n0!#1O~T!.

~16!

In the case of Maxwellian molecules, where the indicatrixb
does not depend on the relative velocity~and consequently
bT5b!, Eq. ~16! is satisfied at any temperature and is a c
ollary of the statement of the invariance of the collision o
erator for a constant collision frequency with respect to
Gaussian transformation@9,2#:

e~kT/2m1!/¹n
2
I ~ f ,c!5I ~e~kT/2m1!/¹n

2
f ,e~kT/2m2!/¹u

2
c!, ~17!

where

e~kT/2m!/¹n
2
f ~n!5S m

2pkTD 3/2E dn8e2m~n2n8!2/2kTf ~n8!,

¹n
25S ]

]nD 2

, ¹u
25S ]

]uD 2

. ~18!

It should be noted that the invariance property of collisi
operator~17! for the casem15m2 was utilized in a well-
known paper@10# to obtain the exact solution of the Boltz
mann equation.

The fact @Eq. ~6!# that collision matrixes constitute
group gives us essentially new opportunities for investigat
the Boltzmann equation. In a paper@1# of one of the presen
authors, a new method to directly construct a class of
crete velocity models for mixtures from the Boltzmann equ
tion was proposed by replacing the integration of Eq.~11!
over the full group of rotations by summation over the d
crete subgroups of this group. In the following sections
make use of the group property~6! of the collision matrixes
~5!, and present a new exponential form of the collision o
erator and a method of renormalization of collision integ
~11!.

A long-standing problem in the kinetic theory is how
effectively describe, within the framework of the Boltzman
equation, the evolution of a system of particles interact
with long-range forces, especially with Coulomb force
Many interesting methods~see@11,12# and references cited
therein! have been developed for practical calculations of
velocity distribution function of Coulomb particles. It is ex
pected that the exact renormalization of the Boltzmann c
lision integral proposed in the present paper will be an
portant step in solving these problems.
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II. REPRESENTATION OF THE GROUP OF SCATTERING
MATRICES IN THE HILBERT SPACE AND THE

BOLTZMANN COLLISION INTEGRAL

There are many equivalent ways to parametrize rota
matrixes, each of which has its own advantage. We will h
use a parametrization of proper rotations~reflections are not
included! by the angle (0<f<p) of rotation and by the
directionn of the axis of rotation, wheren is the unit vector.
Rotation of the anglef around the axisn is given by the
following formula @6,7#:

R̂5efn̂5~12cosf!n̂21~sinf!n̂11, ~19!

where the operator~matrix! n̂ is defined by the following
expression:

n̂[n3, n̂n[n3n. ~20!

The linear span of the operatorsn̂ constitutes the Lie algebra
corresponding to the group of rotations with the followin
commutative relations:

@ n̂1 ,n̂2#[n̂1n̂22n̂2n̂15@n13n2#3. ~21!

The infinitesimal rotations take the form, in accordance w
the exponential representation of rotation matrix~19!, of

R̂5efn̂ .
f→0

11fn̂. ~22!

Substituting Eq.~22! into Eq. ~5! for the scattering matrix,
we obtain the following equation for the infinitesimal sca
tering matrix

Ŝ5S m1R̂

11m

12R̂

11m

m~12R̂!

11m

11mR̂

11m

D .11f ĉ ~f→0!, ~23!

where the generatorĉ for the scattering matrixŜ has the
form

ĉ5
1

11m S n̂ 2n̂

2mn̂ mn̂D . ~24!

Making use of Eq.~24! for the generatorĉ, we can obtain an
exponential representation for the scattering matrix

Ŝ5ef ĉ. ~25!

In accordance with the usual rules@6,7# of the theory of Lie
groups, we can easily construct a representation of the gr
of scattering matrixŜ in the Hilbert space of functions on
bivector variablej:

T̂sF~j!5F~Ŝ21j!. ~26!

To obtain the infinitesimal transformationT̂s in the Hilbert
space, we substitute Eq.~23! into Eq. ~26!,
5-3
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T̂sF~j!5F~Ŝ21j! .
f→0

F„~12f ĉ!j…

5S 12fci ,kjk

]

]j1
DF~j!

5S 12fj c̃̂
]

]j DF~j!. ~27!

By taking into account that

ci ,kjk

]

]j1
5ci ,kS ]

]j i
jk2d i ,kD5

]

]j i
ci ,kjk , ~28!

it can easily be seen from Eq.~27! that the generator of the
group of collision transformationT̂s in the Hilbert space is

ŝ52j c̃̂
]

]j
52

]

]j
ĉj. ~29!

The generatorsŝ can be represented usingn andu:

ŝ52
]

]j
ĉj5

1

11m S ]

]n
,

]

]uD S 2n̂ n̂

mn̂ 2mn̂D S n

uD
5

1

11m H n•S ]

]n
2m

]

]uD3~n2u!J . ~30!

It is seen from Eq.~30! that we can express the generatorŝ
by the vector operatorŝ:

ŝ5n•ŝ, ~31!

where

ŝ52
1

11m
v3S ]

]n
2m

]

]uD . ~32!

The square of the vector operatorŝ is as follows:

ŝ25
1

~11m!2 S ]

]n
2m

]

]uD ~v22vv !S ]

]n
2m

]

]uD
5

1

~11m!2 S ]

]n i
2m

]

]ui
D ~v2d ik2v ivk!S ]

]nk
2m

]

]uk
D .

~33!

To better understand the algebraic properties of the oper
ŝ, let us change variables. Introducing the relative veloc
v5n2u and the center-of-mass velocityw5(mn1u)/(1
1m), we have

1

11m S ]

]n
2m

]

]uD5
]

]v
. ~34!

It is seen from Eq.~34! that the generatorŝ depends only on
relative velocityv and that its form is very simple,

ŝ52v3
]

]v
5

]

]v
3v. ~35!
05120
tor
y

The operator~35!, accurate up to constant, is the well-know
quantum mechanical operator of angular momentum w
commutative relations,

@ŝ i ,ŝk#5eikl ŝ l , @ŝ i ,ŝ2#50,

@ŝ i ,vk#5eiklv l , F ŝ i ,
]

]vk
G5eikl

]

]v l
, ~36!

ŝ iv i5v i ŝ i50.

Mappingĉ→ŝ of Eq. ~29! obviously preserves commutativ
relations,

@ŝ~ ĉ1!,ŝ~ ĉ2!#5ŝ@ ĉ1 ,ĉ2#5ŝ„ĉ~n13n2!…. ~37!

With the help of expression~30! for the generator, we can
obtain the exponential representation of scattering trans
mation T̂s in the Hilbert space of functions on bivectorsj
5(n,u)T:

T̂sF~j!5F~Ŝ21j!5efŝF~j!. ~38!

From Eq.~38! it can be easily seen that the equation forefŝ

acting on the product of two functions is

efŝF1~j!F2~j!5F1~Ŝ21j!F2~Ŝ21j j !

5@efŝF1~j!#@efŝF2~j!#. ~39!

Equation~38! allows us to rewrite the collision operator in
new form in which the group structure of a process of p
ticle scattering is explicitly used. To do this we need expr
sions for invariant measuredR̂ and the cosine of the scatte
ing anglem through parametersf and n ~or f and u, the
latter being the angle between vectorsv andn!.

The invariant measure for the group of proper rotations
as follows when rotations are parametrized by the angle
rotationf and the directionn of the rotation axis is@6,7#

dR̂52~12cosf!df dVn , ~40!

where

dVn5sinu du dw ~0<f,u<p, 0<w<2p!.

Using Eq.~19!, the equation form is as follows:

m5
v•R̂v

v2 5
~12cosf!v " n̂2v1~sinf!v " n̂v1v2

v2 ,

512
~12cosf!@n3v#2

v2 512~12cosf!sin2 u. ~41!

Substituting Eq.~38! into Eq.~11! and keeping Eqs.~40! and
~41! in mind, we obtain the final form for the Boltzman
collision integral:
5-4
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I ~ f ,c!5E b~v,m!@ f ~v8!c~u8!2 f ~v!c~u!#
dR̂

2p
du,

5E du
dR̂

2p
b~v,m!@e2fŝ21# f ~n!c~u!

5E du
dR̂

2p
@e2fŝ21#b~v,m! f ~n!c~u!. ~42!

The form of the collision integral given by Eq.~42! provides
new opportunities for its consideration. A rather simple ge
eratorŝ of the scattering group determines all general pr
erties of the Boltzmann collision operator. We will not fu
ther discuss this question here, but only point out that
product of Maxwellian velocity distributions is an eigenfun
tion of operatorŝ with zero eigenvalue,

ŝe2m1n2/2kT2m2u2/2kT

52
1

11m H n•~n2u!3S ]8

]n
2m

]

]uD J
3e2m1n2/2kT2m2u2/2kT50, ~43!

and thatŝ commutates with the three invariants:

bŝ,v2c50, @ŝ,m#50, @ŝ,~mn1u!#50. ~44!

Note thatŝ can be written in the following equivalent forms

ŝ5n•F ]

]v
3vG52n•Fv3

]

]vG52@n3v#•
]

]v

52
]

]v
•@n3v#. ~45!

Also, from Eqs.~36! and ~31! we have

@ŝ,n•v#50, ~46!

@ŝ,v#52n3v, @ŝ,n3v#52n3n3v. ~47!

III. RENORMALIZATION OF THE BOLTZMANN
COLLISION OPERATOR

In this section, we present an exact method of rewrit
the Boltzmann collision integral in the divergence for
based on Eq.~42!. Within the framework of this method, w
show how to reduce or extract the singularities connec
with infinite total collision cross sections related to sma
angle scatterings. We consider the Coulomb collisions in
tail.

To separate the singular part of the collision integral fro
the regular one, we do not use the usual Taylor series
rather the Taylor series with a residual term. For any funct
w~a! with derivatives we can write

w~a!5w~0!1
w8~0!

1!
a1¯1

w~n21!~0!

~n21!!
an211Ônw~a!,

~48!
05120
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where

Ônw~a!5S E
0

a

da D S ]

]a D n

w~a!. ~49!

Let us consider the operator@e2fŝ21# in Eq. ~42!. Multi-
plying the anglef in the exponent functione2fŝ by some
coefficienta, making use of Eq.~48!, and then insertinga
51, we have the following:

e2fŝ512fŝ1
1

2!
f2ŝ21¯1

~21!n21

~n21!!
fn21ŝn21

1~21!nfnŝnE
0

1

danE
0

an
dan21¯

3E
0

a2
da1e2a1fŝ. ~50!

Changing the order of then-fold integration overa1 , a2 ,...,
andan in Eq. ~50! yields

E
0

1

danE
0

an
dan21¯E

0

a2
da1e2a1fŝ

5E
0

1

da1E
a1

1

da2¯E
an21

1

dane2a1fŝ. ~51!

Keeping in mind that

E
a1

1

da2¯E
an21

1

dan5
~12a1!n21

~n21!!
, ~52!

we finally have the Taylor series of the operatore2fŝ with
the residual term

e2fŝ512fŝ1
1

2!
f2ŝ21¯1

~21!n21

~n21!!
fn21ŝn21

1
~21!n

n!
fnŝnE

0

1

da qn~a!e2afŝ, ~53!

wheren51,2,... and

qn~a!5n~12a!n21, E
0

1

da qn~a!51. ~54!

The measureb(v,m)dR̂ in the collision integral of Eq.~42!

is invariant under the replacementR̂→R̂21. Therefore, we
can symmetrize the factore2fŝ in the integral,

E dR̂b~v,m!e2fŝ5
1

2 E dR̂b~v,m!~e2fŝ1efŝ!
5-5
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5dR̂b~v,m!H (
k50

2k,n
1

~2k!!
f2kŝ2k1

1

23n!
fnŝn

3E
0

1

da qn~a!~eafŝ1~21!ne2afŝ!J . ~55!

Substituting Eq.~55! into Eq. ~42!, we obtain the following:

I ~ f ,c!5E du
dR̂

2p
b~v,m!H (

k51

2k,n
1

~2k!!
f2kŝ2k

1
1

23n!
fnŝnE

0

1

da qn~a!@e2afŝ

1~21!ne2afŝ#J f ~n!c~u!. ~56!

Recalling Eq.~31!, we can separate quantities that depend
collision parametern in ŝn ~the same lettern for the order of
the residual term and the unit vectorn may not cause confu
sion!:

ŝn5~n•ŝ!n5ni 1
¯ni n

ŝ i 1
¯ŝ i n

, ~57!

I ~ f ,c!5E duH (
k51

2k,n
1

~2k!!
^f2kni 1

¯ni 2k
&ŝ i 1

¯ŝ i 2k

1
1

23n!
^fnŝn

„eafŝ1~21!ne2afŝ
…&J f ~n!c~u!.

~58!

Here the bracketŝ& denote averaging over the parameters
collision.

^¯&5E da
df

p
dVnqn~a!~12cosf!b~v,m!@¯#.

~59!

Taking into account that the divergence (]/]u)(¯) vanishes
after integration overu, we can rewrite Eq.~56! in the fol-
lowing divergence form:

I ~ f ,c!52
]

]n
J~ f ,c! ~n.0!, ~60!

where the flow in the velocity space is given by

J~ f ,c!52
1

11m E du v3K nH (
k51

2k,n
1

~2k!!
f2kŝ2k21

1
1

23n!
fnŝn21@eafŝ

1~21!ne2afŝ#J L f ~n!c~u!, ~61!

or in the index form
05120
n

f

Ji~ f ,c!52
1

11m
eii 0i 1E du v i 0

3H (
k51

2k,n
1

~2k!!
^f2kni 1

¯ni 2k
&ŝ i 2

¯ŝ i 2k

1
1

23n!
^fnni 1

ŝn21
„eafŝ

1~21!ne2afŝ
…&J f ~n!c~u!. ~62!

IV. EXAMPLES

Here we consider the general renormalized express
~56! for the Boltzmann collision integral for the most impo
tant cases ofn50, 1, 2, and 4, wheren is the series termi-
nation number.

Case n50.

I ~ f ,c!5E du
df

p
dVn~12cosf!b~v,m!

3S efŝ1e2fŝ

2
21D f ~n!c~u!. ~63!

Equation~63! is the usual form of the Boltzmann collisio
integral that is expressed through the generator of the s
tering group, where the principle of detailed equilibrium
explicitly satisfied.

Case n51. Inserting the valuen51 into general Eq.~56!,
we have a renormalized equation for the Boltzmann collis
integral with respect to the flow in the velocity space:

I ~ f ,c!52
]

]n
J~ f ,c!, ~64!

where

J~ f ,c!

5
1

11m E duK n3vH 1

2
f~eafŝ2e2afŝ!J L f ~n!c~u!

~65!

5
1

11m E du
df

p
dVnda~12cosf!b~v,m!

3@n3v#
f

2
~eafŝ2e2afŝ! f ~n!c~u! ~66!

52
1

11m E du
df

p
dVnda~12cosf!b~v,m!

3@n3v#
f

2
@ f ~n1a8 !c~u1a8 !2 f ~n2a8 !c~u2a8 !#.

~67!
5-6
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The Boltzmann equation can be rewritten in the form of
Liouville equation with the help of the divergence form
the collision integral~60!:

] f

]t
1n•

] f

]r
1

]

]n
•S e1

m1
E1

e1

m1c
n3B1g1

1

m1
FcollD f 50.

~68!

Note that in addition to the usual electromagnetic force a
gravity force, we have nonlocal friction forceFcoll , which
depends on the distribution functionsf (n) andc(u). In the
case ofn51 this force has the following expression:

Fcoll5
J

m1f ~n!

52
1

m11m2
E du

df

p
dVnda~12cosf!b~v,m!

3@n3v#
f

2

@ f ~n1a8 !c~u1a8 !2 f ~n2a8 !c~u2a8 !#

f ~n!
,

~69!

where the postcollisional velocities can be expressed as

n6a8 5n1
@~12cosaf!n̂26~sinaf!n̂#~n2u!

11m
. ~70!

u6a8 5u2
m@~12cosaf!n̂26~sinaf!n̂#~n2u!

11m
.

~71!

Recall that

n̂n[n3n,

R̂5efn̂5~12cosf!n̂21~sinf!n̂11.

For the Coulomb collisions, the collision indicatrix takes t
following form using the Rutherford formula

b~v,m!5~11m!2S e1e2

m1
D 2 1

v3~12m!2

5~11m!2S e1e2

m1
D 2

3
1

v3~12cosf!2~12cosu!2~11cosu!2 .

~72!

The probability of collision is given by the measure

dR̂

2p
b~v,m!5~11m!2S e1e2

m1
D 2

3
df dVn

pv3~12cosf!~12cosu!2~11cosu!2 ,

~73!
05120
e

d

for n51 we haveq1(a)51, and the flowJ takes the form

J~ f ,c!52~11m!2S e1e2

m1
D 2E du

3
df dVnda

pv3~12cosf!~12cosu!2~11cosu!2

3
f

2

@n3v#

~11m!
@ f ~n1a8 !c~u1a8 !2 f ~n2a8 !c~u2a8 !#.

~74!

Now we have an essentially new form of the collision int
gral. The collision integral is represented by the divergen
of the flow in the velocity space. A new parameter, 0<a
<1, that reduces the strength of collision is introduced. T
obtained equation may be convenient for Monte Carlo sim
lations.

Case n52. The flow in the velocity space is given by th
following equation:

J~ f ,c!5
1

11m E duK 1

4
f2~n3v !ŝ~eafŝ1e2afŝ!L

3 f ~n!c~u! ~75!

52
1

~11m!2 E duK 1

4
f2~n3v !~n3v !•S ]

]n

2m
]

]uD @ f ~n1a8 !c~u1a8 !1 f ~n2a8 !c~u2a8 !#L . ~76!

For n52, the probability functionqn(a) for the reducing
parametera is q1(a)512a from Eq.~54!. If we change the
probability functionq1(a) into thed functiond~a!, which is
far from reality, then we have the collision integral in th
Landau-Fokker-Planck form,

J~ f ,c!52
1

2~11m!2 E du^f2~n3v !~n3v !&•S ]

]n

2m
]

]uD f ~n!c~u!. ~77!

Making use of commutation rule@(n3v),ŝ#5n3n3v,
and recalling thatŝ can be expressed as

ŝ52
1

11m S ]

]n
2m

]

]uD •~n3v !, ~78!

we can rewrite Eq.~77! in the half-divergence form

J~ f ,c!5
1

~11m!
E duK 1

4
f2n3n3v@ f ~n1a8 !c~u1a8 !

1 f ~n2a8 !c~u2a8 !#L 2
1

~11m!2

]

]n
•E du

3 K 1

4
f2~n3v !~n3v !@ f ~n1a8 !c~u1a8 !
5-7
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1 f ~n2a8 !c~u2a8 !#L . ~79!

Case n54. The collision integral becomes

I ~ f ,c!5E duH 1

2!
^f2ni 1

ni 2
&ŝ i 1

ŝ i 2
1

1

234!
^f4ŝ4~eafŝ

1e2afŝ!&J f ~n!c~u!, ~80!

and the flow in velocity space is

Ji~ f ,c!52
1

11m
eii 0i 1E du v i 0H 1

2!
^f2ni 1

ni 2
&ŝ i 2

1
1

234!
^f4ni 1

ŝ3~eafŝ1e2afŝ!&J f ~n!c~u!.

~81!

Let us evaluate the average^f2ni 1
ni 2

& in Eq. ~81!. A general
form of the symmetric tensor, which depends only on o
vector, is

^f2nink&5Ad ik1B
v ivk

v2 . ~82!

To determine the unknown coefficientsA andB, we have two
conditions,

d ik^f
2nink&5^f2&,

v ivk

v2 ^f2nink&5^f2 cos2 u&,

~83!

which give us two simple equations for the coefficients
Eq. ~82!, i.e.,

3A1B5^f2& and A1B5^f2 cos2 u&. ~84!

The final result of averaging is as follows:

^f2nink&5
1

2
^f2 sin2 u&d ik1

1

2
^f2~3 cos2 u21!&

v ivk

v2 .

~85!

Recalling thatv i ŝ i5ŝ iv i50, we have

^f2nink&ŝk5 1
2 ^f2 sin2 u&ŝ i , ~86!

^f2nink&ŝ i ŝk5 1
2 ^f2 sin2 u&ŝ i ŝ i

5
^f2 sin2 u&
2~11m!2 S ]

]n i
2m

]

]ui
D

3~v2d ik2v ivk!S ]

]nk
2m

]

]uk
D . ~87!

Now the Boltzmann collision integral for the case ofn54 is
represented by the sum of the two terms:
05120
e

I ~ f ,c!5
1

2~11m!2

]

]n i
E du

^f2 sin2 u&
2

~v2d ik2v ivk!

3S ]

]nk
2m

]

]uk
D f ~n!c~u!

1
1

234! E du^f4
•ŝ4~eafŝ1e2afŝ!& f ~n!c~u!.

~88!

Using Eq.~73!, we have

1

2
^f2 sin2 u&5~11m!2S e1e2

m1
D 2

3E f2df d cosu

v3~12cosf!~12cosu!~11cosu!

~89!

The integral in Eq.~89! diverges logarithmically asu→0 or
p. To avoid this, we introduce the cutoff angleumin and
consider the rangeumin,u,p2umin , which is usual for Cou-
lomb collisions. Due to the transversability conditionv i ŝ i
50, we can change the vectorn into the vectorn'5n
2v(v•n/v2) in the operatorŝ5n•ŝ. A squared norm of
this vector isn'

2 512cos2 u andŝ commutates with cosu. It
implies that

ŝ45~n'•ŝ!45sin4uS n'

un'u
•ŝD 4

. ~90!

Different from the first term of Eq.~88!, the second term of
Eq. ~88! does not diverge asu→0 or p. The first term in Eq.
~88! is in essence the Landau-Fokker-Plank collision integ
@13,14#. The only difference is that in the present formulatio
we have the new effective collision frequency^f2 sin2 u&/2
instead of the transport collision frequency^12m&5^(1
2cosf)sin2 u& introduced in Refs.@13# and@14#. At smallf,
which always means small scattering cosinem but not vice
versa, the two frequencies coincide. For the present effec
collision frequency we can easily prove the inequality

^12m&,
^f2 sin2 u&

2
,

p2

4
^12m&. ~91!

The small difference between the present and previ
@13,14# frequencies is not very important for practical phys
cal problems, but it is important that the lack of coinciden
of these two frequencies proves that the Landau se
5-8
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@13,14# is divergent.
In conclusion, it is worth emphasizing that the renorm

ized equations for the Boltzmann collision integral obtain
in the present paper are not approximate expansions bu
act ones that are especially useful when a total collision c
section diverges and the termcollision is badly determined.
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