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Collision group and renormalization of the Boltzmann collision integral
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On the basis of a recently discovered collision grgip L. Saveliev, inRarefied Gas Dynamics: 22nd
International Symposiupedited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 588P, Melville, NY,
2001), p. 101, the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the
scattering of particles with small angles. In this part ithfinity due to the infinite cross sections is extracted
from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a diver-
gence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be
interpreted in terms of the nonlocal friction force that depends on the distribution function.
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I. INTRODUCTION wherem; /m,.

Also, there is another interesting parametrizafiéhthat
naturally appears in the hard sphere collisions. This will be
discussed in detail later. In accordance with the parametriza-

Applications of the group theory remain underutilized in tion used in Eq(1), the collision integral that describes the
kinetic theory although they deserve to be utilifdd?]. In time evolution of the distribution functiofi(») of the first
this paper, opportunities and advantages due to the paramgpecies due to collisions with the second species having the

etrization of two—particle collisions by a matrix belonging to velocity distribution functiony(u) is given by the usual ex-
the group of rotations are shown. In order to construct theyressior(5]

collision integral in the Boltzmann kinetic equation, a colli-

sion of two particles is usually determined by setting a di- n

rectionn (n?=1) of the postcollisional relative velocifi]. |(f’¢):f vaa(vz, L)[f(,}’)l/l(u/)_f(v)w(u)]dﬂndu,
In that case, if a particle of mass, and velocityr collides v

with a particle of massn, and velocityu, the velocities after (2)
collision are given by the following equations:

A. Parametrization of collisions by a rotation matrix
and collision group

wherev=v—u is the relative velocity andr, is the differ-
, mv+u+|v—uln ential collision cross section.
B 1+m ' In the present paper, we propose to construct the collision
integral using a parametrization of the scattering represented

,_ Mrtu-— m[r—uln by a rotation matrixR e O3 * which is determined as follows

u 1+m ' @ by Euler’s anglesp, 6, and ¢ [6]:
|

cose —sing 0 1 0 0 cosyy —sing 0
R(¢,0,4)=| sing cos¢ 0|| O cos# —sind|| sing cosy O
0 0 1/ \0 sinf® coséO 0 0 1

COS¢ COSYy—Sing Siny cos# —CcoSe Siny—sSing cosy coshd  sing sind

= sing cosy+Ccose sinyg cosf  —sing Sinyg+ COSe COSY COSH  —CcOSe Sind | . 3
sinyg sing cosysing cosé

In this case, the transformation of the velocities due to a

. . S mv+u—mﬁ(u—u)
collision becomes a linear one, which is different from Eq. u' =
(1): 1+m

4)

- The velocitiesy’ and u’ are determined by a partitioned
,_ My+u+Ry—u) matrix (2x2 celly. The size of each cell is obviously
1+m ’ (3%3):
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miR 1-R - - dR
A | T T () =1(F) = [ b, )13 )u) = () ] 5
I I ' s
m(1-R) 1+mR . dR
frm Lem - [bwwiFERo-F@OI .  a

Here, ¢ is a six-dimensional bivector consisting of the com-where b(v,u)=voy(v,u) is a scattering indicatrix,
ponentsr andu. Let us briefly describe basic properties of (R y)=y.Rv/v? is the cosine of the scattering angle, and

these matrices that can be easily eorlfirnjed by their direqt (¢£) = foy(£) = f () y(u) is the two-particle velocity distri-
multiplication. The scattering matricéR)(Re O3) consti-  bution function.

tute a group that is isomorphic to the group of orthogonal Here we demonstrate some simple advantages, which pro-
matricesO3 (the group of rotations including improper rota- vide the form of the Boltzmann collision integréll). By
tions): taking into consideration the following equation,

S(R1)-S(Rp)=S(Ri-Ry), STHR)=S(R™). ()

A 1 -
S(v' =) (U’ —Ug) = 8(Sé— £g) = —— 8(£~ S &)
Here, it should be noted that parametrizatjdh of a colli- |dets

sion by the directiom normal to the plane of reflection of L oere & B-1
the relative velocity ¢’ =v —2nn-v) also provides a linear = oE=S(R™) o), (12

transformation of the particles’ velocities due to collision. In {he measure invariand@0), and the property of the indica-
this case, however, scattering matrices do not constitute By ensuring a detailed equilibriurb(p,R) = b(v,RY), it

group, which is crucial for our further consideration. Due to : X
) o P can be easily seen that the expression for the kernel of the
energy conservation law for a collision, the mat8R) sat-  pjjinear collision operatof11) can be rewritten in the fol-

isfies the following condition: lowing form:
~(m 0\, [(m O I (6(v—wp),6(u—Uup))
S(o 1)5_(0 1)’ @
=1(8(§— &)
whereS is the transpose d. From Eq.(7) we have dR . ooy
~ [ dug_bie. R SR 60 a6 £0)]
|detS|=1. (8 .
CdR ,
It provides the equality of velocity volumes: - f 27 Do, RILS(r=1p) = S(»=wo)]. (13
dvdu=dy’ du’. (99 A similar equation can also be obtained for the Maxwellian

velocity clusters:

This relation is much simpler thandvdudQ’ L(f

=d»’ du’ dQ that appears in the case of the conventional (Fm(r= o), m(u=Uo))
5] parametrization of a collision.

SIp =1 (e g€ £0))

B. Collision integral

B dR . P
—f dus—b(o R ye (6~ SR Do)

To rewrite the collision integral2) for the case when a
collision is parametrized by rotation matr{8), integration

over directions of the vectan should be replaced by inte- ~fmedm(§=£o)]
gration on the invariant measuré—8| over the group dR
04 (fdQ /47— [dRI87?): =Jﬁ[bT(V,u(’),R)fM(V—Vé)—b,(v,uo,R)fM(v—vo)],
dR=dydpsingdd (0<y,p<2m, O<O<m), (14)
N A o . where
dR=dRyR=dRR,=dR 1, (10
) b0, R)= [ bloR)(u-ugdu, (5
f dR=872.
1 3/2 m1V2
S . i fu(v)=|z—=| exp — ,
The collision integral now takes the following form: 27KT 2kT
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T okT MATRICES IN THE HILBERT SPACE AND THE

m, 372 m2u2 Il. REPRESENTATION OF THE GROUP OF SCATTERING
o= o] el - o]
BOLTZMANN COLLISION INTEGRAL

Here, Eqs(7) and(8) were employed. At the zero tempera-  There are many equivalent ways to parametrize rotation
ture limit (T—0), from Egs.(14) and (15), we have an matrixes, each of which has its own advantage. We will here

asymptotic form similar to Eq(13), use a parametrization of proper rotatignsflections are not
included by the angle (& ¢=<m) of rotation and by the
| (fm(v—vo) hp(U—Ug)), 0o directionn of the axis of rotation, wherg is the unit vector.

Rotation of the anglep around the axis is given by the
following formula[6,7]:

dR .
_fﬁb(vo’R)[fM(v_VO)_fM(V_VO)]+O(T)' R=e%1=(1-cos¢)n2+ (sing)A+1, (19)
(16)
where the operatofmatrix) fi is defined by the following
In the case of Maxwellian molecules, where the indicalrix €XPression:
does not depend on the relative velocfand consequently
br=b), Eq. (16) is satisfied at any temperature and is a cor-

ollary of the statement of the invariance of the collision op-The jinear span of the operatdionstitutes the Lie algebra

erator _for a constant _coIIision frequency with respect to thecorresponding to the group of rotations with the following
Gaussian transformatid®,2]: commutative relations:

A=nX, Avr=nXw. (20

e(kT/zml)/Vfl(f,w):|(e(lezml)/vﬁf,e<kT/2m2)/VﬁlT,,), 17) [Ay,A,]=RA10,— AR =[N XNy]X. (22)

The infinitesimal rotations take the form, in accordance with

where the exponential representation of rotation matfi®), of
3/2 ~ ~ R
(kT/2m)/v2 _(_m ' o m(r— v )22KTe R=e’" = 1+ ¢n. (22
¢ @ (zwkT> f dv'e o, $—0
) ) Substituting Eq.(22) into Eq. (5) for the scattering matrix,
] ] i i i infinitesi
sz(_) v2=|Z 19 e obtain the following equation for the infinitesimal scat-
volav) Y 1au tering matrix

It should be noted that the invariance property of collision m+R 1-R
operator(17) for the casem;=m, was utilized in a well- R 1+m 1+m
known papef10] to obtain the exact solution of the Boltz- S= . .| =1+¢C (¢—0), (23
mann equation. m(1-R) 1+mR

The fact[Eq. (6)] that collision matrixes constitute a 1+m 1+m

group gives us essentially new opportunities for investigating R
the Boltzmann equation. In a paddi of one of the present where the generatot for the scattering matriXS has the
authors, a new method to directly construct a class of disform
crete velocity models for mixtures from the Boltzmann equa-
tion was proposed by replacing the integration of Effl) .1
over the full group of rotations by summation over the dis- c= 1+m
crete subgroups of this group. In the following sections we
make use of the group propert§) of the collision matrixes Making use of Eq(24) for the generatog, we can obtain an
(5), and present a new exponential form of the collision op-exponential representation for the scattering matrix
erator and a method of renormalization of collision integral R A
(12). S=e?C, (25)

A long-standing problem in the kinetic theory is how to
effectively describe, within the framework of the Boltzmann In accordance with the usual rulg,7] of the theory of Lie
equation, the evolution of a system of particles interactingdrOUps, we can easily construct a representation of the group
with long-range forces, especially with Coulomb forces.of scattering matrixS in the Hilbert space of functions on
Many interesting method&see[11,12 and references cited bivector variable:
therein have been developed for practical calculations of the R R
velocity distribution function of Coulomb particles. It is ex- TF(&)=F(S %%). (26)
pected that the exact renormalization of the Boltzmann col- R
lision integral proposed in the present paper will be an im-To obtain the infinitesimal transformatiofy in the Hilbert
portant step in solving these problems. space, we substitute ER3) into Eq. (26),

f —N
—-mh m ) 24

:)
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?SF(@: F(g—lg) = F((1—¢8)¢) The operator35), a_m:curate up to constant, is the weII-know_n
$—0 quantum mechanical operator of angular momentum with
commutative relations,

d
:<1_¢Ci,k§k(3_§l)|:(§)

[Gi.0¢]=€wdy, [67,6°]=0,

d

:<1—¢§Ea—§)|:(§)- (27) Lo vi]=€ivy,

1%

Jd
ox =eik|0—v|, (36)

agj,

By taking into account that

O'iUi:via'iZO.

J J J
Ci,kfk(}_gl = Ci,k(&_gifk_ 5i,k) = ﬁ_gici,kgk’ (28)  Mappinge— & of Eq. (29) obviously preserves commutative

relations,
it can easily be seen from E(R7) that the generator of the
group of collision transformatioii in the Hilbert space is [6(81),6(€2)]=0(C1,82]=(E(N 1 XNy)).  (37)
R ~ d J . With the help of expressiof30) for the generator, we can
o0=—§C7=—C&. (29) obtain the exponential representation of scattering transfor-
& 9
mation T in the Hilbert space of functions on bivectogs
The generatoré can be represented usimgand u: =(r,u)':
L B AL L TF(E)=F(5 1o =e"F(¢). (39)
9€ 1+midr’ du/\mh —mh/\u i
1 3 P From Eq.(38) it can be easily seen that the equationd6f
= n-{——m—|x(r—u)jy. (300  acting on the product of two functions is
1+m v au

bo — &-1 &—1gi
It is seen from Eq(30) that we can express the generafor ePFL&FAE)=Fu(STHFAS¢))

by the vector operatod: =[e?F(&)][e?F,()]. (39)
o=n-o, (31 . , . .
Equation(38) allows us to rewrite the collision operator in a
where new form in which the group structure of a process of par-
ticle scattering is explicitly used. To do this we need expres-
. 1 J J sions for invariant measui@R and the cosine of the scatter-
o= 1+mv>< FraRLLEE (32) ing angle u through parameterg andn (or ¢ and 6, the
latter being the angle between vecterandn).
The square of the vector operatéris as follows: The invariant measure for the group of proper rotations is
as follows when rotations are parametrized by the angle of
52— 1 R (02— v) R rotation ¢ and the directiom of the rotation axis i$6,7]
(1+m)?lor  au dv  du
) 1 3 3 s P P dR=2(1-cos¢)d¢ d},, (40
S m? M) TG TG here

33

33 dQ,=sinfdfde (0<¢,0<m, 0<ep<2m).
To better understand the algebraic properties of the operator
&, let us change variables. Introducing the relative velocityUsing Eq.(19), the equation fo is as follows:
v=v—Uu and the center-of-mass velocity=(mwv+u)/(1

+m), we have v-Rv  (1—cos¢)v-hv+(sing)v - v +v?
M= 7= 2 !
1 (9 a\_ 24 v v
Trmiar Mau "o (34 )
1 (1—cosg)[nXv] _1-(1 2 a1
It is seen from Eq(34) that the generatod depends only on T v? =1-(1-cosg)sin” 6. (41)

relative velocityv and that its form is very simple,

Substituting Eq(38) into Eq.(11) and keeping Eqg40) and
(41) in mind, we obtain the final form for the Boltzmann
collision integral:

o= xa—ax 35
o=—vX—o=—Xu. (35
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where

dR
1(£.00= [ b0 I F 0~ 1w 1 5 du

A~ o J n
dR . Onﬁo(a):(fo da)(a) o(a). (49)
=Jduﬂb(u,,u)[e $7—11f(w)h(u)

A Let us consider the operat{ne“f"}— 1] in Eq. (42). Multi-
:J dud—R[e“ﬁ‘}—l]b(u,M)f(v) ¥(u). (42) plying the angles in the exponent functioe™ ¢’ by some
2m coefficienta, making use of Eq(48), and then insertingy

The form of the collision integral given by E¢42) provides =1, we have the following:

new opportunities for its consideration. A rather simple gen- no1
eratoro of the scattering group determines all general prop-  o-¢o_q _ b+ i¢2&z+___+ ) PAREFLRE
erties of the Boltzmann collision operator. We will not fur- 2! (n=1)!

ther discuss this question here, but only point out that the 1 N

product of Maxwellian velocity distributions is an eigenfunc- +(— 1)n¢n(}nj danJ ”danil. .

tion of operators with zero eigenvalue, 0 0

e~ M2k —myu/2kT y fazdale’ 2185 (50
0
1 " ' )
1+ m n-(v=u) v m&u Changing the order of the-fold integration overq, «,,...,
Xe—mlvzlzw—mzuz/zw:o, 43 and «,, in Eq. (50) yields
and thato- commutates with the three invariants: jldanfandan_l---fazdalewl“’f’
0 0 0
l6,v%=0, [6,#]=0, [&,(mp+u)]=0. (44)
1 1 1 “
Note thato- can be written in the following equivalent forms: = fo da’lf day - f dane™ 1?7, (51)
ay n—1
) J J J
F=n-|--Xv|=-n-loX—r=—[nxv] - Keeping in mind that
J 1 1 (1_a )nfl
=— —.[nXv]. 4 - v
2 [nxo] (45) leaz---Lnldan_ T (52

Also, from Egs.(36) and(31) we have X
we finally have the Taylor series of the operagor®” with

[a.n-v]=0, (46)  the residual term
[6,0]=—-nXv, [6,nXv]=—-nXnxv. (47) L (—1nt
e $r=1— b+ §¢26_2+. et T(ﬁr'lfla_nfl
IIl. RENORMALIZATION OF THE BOLTZMANN ' (n )!
COLLISION OPERATOR (—=1)" 1 .
o § + g0 [ dagy@e (69
In this section, we present an exact method of rewriting n! 0
the Boltzmann collision integral in the divergence form
based on Eq(42). Within the framework of this method, we wheren=1,2,... and
show how to reduce or extract the singularities connected
with infinite total collision cross sections related to small- 1
angle scatterings. We consider the Coulomb collisions in de- qn(@)=n(1—a)" 1, J daq,(a)=1. (54)
tail. 0

To separate the singular part of the collision integral from

the regular one, we do not use the usual Taylor series buthe measuré(v,.)dR in the collision integral of Eq(42)
rather the Taylor series with a residual term. For any functlor]S invariant under the replacemeRt—R~!. Therefore, we

with derivatives w n wri ) - .
¢(e) with derivatives we ca e can symmetrize the facta #? in the integral,

¢'(0) ¢""1(0)

¢(a)=¢(0)+ Ta+"'+ Wan_l+én@(a)y

~ L1 n . .
(48) j de(U,,u)ef"S":EJ'de(v,,u)(ef‘f"’+e¢’”)
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2k<n

(2k)| ¢2k 2k

szRb(v,/.L) o"e"

2><nI

1 - ~
xf da qn(a)(e“¢”+(—1)”e“¢”)}. (55
0
Substituting Eq(55) into Eqg. (42), we obtain the following:

2k<n

(2k)| ¢2k 2k

dR
I(f,¢)=f duzb(v,,u)

1 ~
s 86 f dagn(a)[e "

+(— 1>“e-“¢‘”f]] f(»)g(u). (56)

Recalling Eq{(31), we can separate quantities that depend o

collision parameten in 6" (the same letten for the order of

the residual term and the unit vectomay not cause confu-

sion):

'a-i ) (57)

:(na- n:ni ...ni a—i ..
1 n '1 n

2k<n 1
I(f,{//)=f du| (2k)l <¢2k .. nizk>‘}i1”'&izk

«a)) 4 E(w)h(u).

(58

NAn(aado _ 4\Na—
+2Xn!(¢cr(e +(—1)"e

PHYSICAL REVIEW E 65 051205
1
it ) == 7 8iigi, | duvig

2k<n
(b coon VNG o
><| &4 (2K)! (¢ ni, n|2k>0|2 i,

Np AnN—1¢nado
+ oxn (¢ ni,o (e

+(—1)”e“¢‘})>]f(v)¢w)- (62

IV. EXAMPLES

Here we consider the general renormalized expression

(56) for the Boltzmann collision integral for the most impor-
tant cases oh=0, 1, 2, and 4, where is the series termi-

rpation number.

Case n=0.

|(f,l/i)=f dudﬁdﬂn(l—cosdﬂb(v,u)

et +e 47

5 (63)

—1)f(v)z//(u).

Equation(63) is the usual form of the Boltzmann collision
integral that is expressed through the generator of the scat-
tering group, where the principle of detailed equilibrium is
explicitly satisfied.

Case n=1. Inserting the valuea=1 into general Eq(56),
we have a renormalized equation for the Boltzmann collision

Here the bracket§) denote averaging over the parameters ofintegral with respect to the flow in the velocity space:

collision.
do
<'“>=f da—dQnGn(a)(1-cosg)b(v,w)[--].
(59
Taking into account that the divergenc# {u) (- --) vanishes

after integration oveun, we can rewrite Eq(56) in the fol-
lowing divergence form:

]
I(f.9)=——_J(f.¢) (n>0), (60)

where the flow in the velocity space is given by
2k<n 1
2k~ 2k—1
J(f, )= duw<<n{ 2 T s

¢na.n—l[ea¢[7

+ 2Xn!
+(—=D" “""’]] > f(v)g(u), (61)

or in the index form

J
l(f,tﬂ)=—5~1(f,¢), (64)
where
J(f, )
_ 1 1 ado —ado
=1 m du{ nXv Ed)(e —e )t ) f(w)(u)
(65)
1 do
=m du7dQnda(l—cos¢)b(v,,u)
><[n><v]g(ew&—e—w?’)f(u)lp(u) (66)
= 1+mjdu dQ,da(l—cos¢)b(v,u)
¢ 1A ! i !
><[n><v]g[f(vm)dl(um)—f(vfa)tﬂ(ufa)]-
(67)
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The Boltzmann equation can be rewritten in the form of thefor n=1 we haveq,(«)=1, and the flowd takes the form
Liouville equation with the help of the divergence form of

the collision integral60):

A2 (B e B g SF =0
ot ar v ml 1CV g 1 CO|| e

(68)

Note that in addition to the usual electromagnetic force and

gravity force, we have nonlocal friction forde,,, which
depends on the distribution functiofér) and (u). In the
case ofn=1 this force has the following expression:

B J
I:coll_w
= m1+m2fdu_dﬂ da(1l—cos¢)b(v,u)
f ’ ’ —f ’ ’
x[an]g[ (vm)zp(uﬂi(v)(v_a)t/f(u_a)]’
(69

where the postcollisional velocities can be expressed as

[(1—cosa¢)h?*(sinag)h](v—u)

V., v+t 1+m (70)
) m[(1—cosa¢)A’=(sinag)h](v— u)
ul  =u—
-« 1+m
(72)
Recall that

Arv=nXwp,

R=e%"=(1-cos¢)A?+ (sing)n+1.

For the Coulomb collisions, the collision indicatrix takes the

following form using the Rutherford formula

1
v (1-p)?

ee,)?
my

ee,)?
my
1

x v3(1—cos¢)?(1—cosh)?(1+cosh)?’
(72)

b(v,u)=(1+m)?

=(1+m)?

The probability of collision is given by the measure

€16, 2
m
d¢pdQ,

x mv3(1—cos¢)(1—cosh)?(1+ cosh)?’
(73

dR )
5, P(,p)=(1+m)

e 2
I, =—(1+m)? r;lz) fdu
dedQ, da
><m;3(1—cos<j§)(1—cosﬁ)2(1+cos¢9)2

¢ [nXv] , )
XE (1+m) [f(VJra)l//(UJra)_f(

vl )(ul )]
(74)

Now we have an essentially new form of the collision inte-
gral. The collision integral is represented by the divergence
of the flow in the velocity space. A new parametek: @
=<1, that reduces the strength of collision is introduced. The
obtained equation may be convenient for Monte Carlo simu-
lations.

Case r=2. The flow in the velocity space is given by the
following equation:

J(f lﬂ) 1+m du<%¢2(an)&(ea¢(}+e—a¢(})>

Xf(w)ip(u)

= ! 1 2 J
_(1+—m)zfdu Z¢ (nXv)(NXv)- -

J
—m@)[f(v;a)t/f(u;a)ﬂ(v'a)¢(u'a)]>. (76)

(79

For n=2, the probability functiong,(«) for the reducing
parametew is q,(a) =1— « from Eq.(54). If we change the
probability functiong,(«) into the § function & «), which is
far from reality, then we have the collision integral in the
Landau-Fokker-Planck form,

— 1 2
J(f,gﬁ)——mf du<¢ (HXU)(an)>' (9_

—|f(v)(u). (77

Making use of commutation rul¢(nXwv),s]=nxXnXuv,
and recalling thaé- can be expressed as

1
1+m

d

— nXx
gy May) (NX0),

(78)

F=—

we can rewrite Eq(77) in the half-divergence form

1
()= fdU<z¢2n><n><v[f(V'+a)¢(U'+a)

1+m)
1 d
+f(v’a)t/f(U’a)]> S (@+rmZor f 4

1
><<Z¢2(n><v)(an)[f(VLa)w(Uia)
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+f(V'-a)¢(U'-a)]>- (79

Case n=4. The collision integral becomes

1 1 i
I(f,d;):f du{Z(d’ZnilniZ)a'ila'iz-i- 5% 4] (pr5t (e

+e-a¢ff>>] f(w)y(u), (80)
and the flow in velocity space is

1 1 R
Ji(f,)=— menoilj du Ui0[5<¢2ni1ni2>ai2

+

%Al <¢4ni163<e“¢&+e—a¢3>>] @)y

(81

Let us evaluate the averag¢2nilni2> in Eqg. (81). A general

form of the symmetric tensor, which depends only on one

vector, is

Uilg

<¢2nink>:A5ik+B7- (82

To determine the unknown coefficieAsandB, we have two
conditions,

S p*nin) =( %), %((ﬁznink):(qﬁzcosz 6),

(83
which give us two simple equations for the coefficients in
Eqg. (82), i.e.,

3A+B=(¢? and A+B=(¢?cog 6). (84)
The final result of averaging is as follows:
2 1 2 i 1 2 Uil
(dPning = 5 ($?sir? 0) 5+ 5 ($*(3 cos 0-1) 7
(85
Recalling thatv;6;= ov;=0, we have
(¢%nin o= 3(p sir? 6) G, (86)
(¢°Nin) 60y= 3(P* SIIF 6) 5
(@?sint o) [ 9 d
“2+m? o, Mau
X (028 — O m 8
(v~ vivK) e m&uk . (87

Now the Boltzmann collision integral for the caserof 4 is
represented by the sum of the two terms:
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(p? sir? 6)

fL)= ’ :
I( .lﬂ)—ma—vif 5 (v°oik—vivy)

X

d d )
(?_Vk_ma_uk f(v)y(u)

+

fdu(¢4-64(ea¢&+e—a¢&)>f(u)¢(u).
(88)

2Xx4!

Using Eq.(73), we have

1 _ e.6,\2
- 2 _ 2
2<¢> sir? )= (1+m) —ml)
$>d¢pd cosé
Jv3(1—cos¢)(1—cos¢9)(1+cos€)

(89

The integral in Eq(89) diverges logarithmically ag—0 or
7. To avoid this, we introduce the cutoff angl,,, and
consider the rangé,;,< <7 — 6min, Which is usual for Cou-
lomb collisions. Due to the transversability conditiong;
=0, we can change the vector into the vectorn, =n
—v(v-n/v?) in the operatorG=n-&. A squared norm of
this vector isn? =1—cog # and& commutates with co It
implies that

n 4
&4=(n, - ar)“:sin“a(—l &) . (90)

|nJ_|.

Different from the first term of Eq(88), the second term of
Eq. (88) does not diverge a8— 0 or 7. The first term in Eq.
(89) is in essence the Landau-Fokker-Plank collision integral
[13,14). The only difference is that in the present formulation
we have the new effective collision frequenty? sir? 6)/2
instead of the transport collision frequeng®—u)=((1
—cos¢)sir? 6y introduced in Refd.13] and[14]. At small ¢,
which always means small scattering cospdut not vice
versa, the two frequencies coincide. For the present effective
collision frequency we can easily prove the inequality

($2sirt 6) 2

(- wy << T (1), (1)

The small difference between the present and previous
[13,14] frequencies is not very important for practical physi-

cal problems, but it is important that the lack of coincidence
of these two frequencies proves that the Landau series
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[13,14] is divergent. ACKNOWLEDGMENTS

In conclusion, it is worth emphasizing that the renormal-
ized equations for the Boltzmann collision integral obtained One of the authors, V. L. Saveliev, greatly appreciates the
in the present paper are not approximate expansions but ekastitute of Fluid Science, Tohoku University for inviting
act ones that are especially useful when a total collision crossim and giving him the chance to do cooperative work with
section diverges and the teroollision is badly determined. Professor K. Nanbu.

[1] V. L. Saveliev, inRarefied Gas Dynamics: 22nd International 1986.

Symposium, Sydney, Australia, July, 208@ited by T. J. Bar- [8] N. Ya. Vilenkin, Special Functions and Theory of Group Rep-

tel and M. A. Galllis, AIP Conf. Proc. No. 58&\IP, Melville, resentation(Nauka, Moskow, 1965(in Russian.

NY, 2002, p. 101. [9] A. P. Prudnikov,Gauss TransformatignMathematical Ency-
[2] V. L. Saveliev, J. Math. Phys37, 6139(1996. clopedia, Vol. 1(Soviet Encyclopedia, Moscow, 197 7. 899
[3] L. D. Landau and E. M. LifshitzMechanics 3rd ed.(Perga- (in Russia.

mon, New York, 1978 [10] A. V. Bobylev, Dokl. Akad. Nauk SSSR25, 1296(1975 (in

[4] C. CercignaniRarefied Gas Dynamics: From Basic Concepts Russiai.

to Actual CalculationgCambridge University Press, London, [11] K. Nanbu, IEEE Trans. Plasma S@8, 971 (2000

UK, 2000. , [12] A. V. Bobylev and K. Nanbu Phys. Rev. &, 4576(2000.
[5]J. H. Ferziger and H. G. Kapeathematical Theory of Trans- [13] L. D. Landau, zZh. Eksp. Teor. FiZ, 203(1937; see also, R.

[6] 'F\)Aor;[_'z:g;f;seii grias_ﬁﬁgc::h'::g?gd'&“ﬂziirgsr:)’ F{ﬁfical Balescu, Statistical Mechanics of Charged Particléiter-
) P y PP y Science, New York, 1962

Problems(Addison-Wesley, Reading, MA, 1954 141 A V. Bobvlev. Dokl. Akad. Nauk SSSR25 535 (1979 (i
[7] A. O. Barut and R. Raczk&heory of Group Representations [14] A. " obylev, Doxl. Akad. Nau 5 (1979 (in
and Applications 2nd rev. ed.(World Scientific, Singapore, Russiap.

051205-9



